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Outline

Nonequilibrium dynamics of many-body open quantum systems

A real-time quantum Monte Carlo approach to the steady state

Parallel implementation, benchmarking, first results

http://ltpn.epfl.ch
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Motivation

Driven open

many-body

dynamics

Koch et al., PRA (2010)

Buluta, Nori, Science 326 (2009)

Ultracold atoms

in optical lattices

Coupled microcavity arrays

Baumann et al., Nature (2010)

Driven-open Dicke models

Kasprzak et al., Nature (2006)

Exciton-polariton systems 

in semiconductor quantum wells

Carr et al. PRL 2013

Driven-dissipative Rydberg systems
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Introduction

Open quantum systems

Coupling to an external environment

The time evolution follows the Liouville-von-Neumann master equation

˙̂ρ(t) = Lρ̂

˙̂ρ = − i
~ [Ĥ, ρ̂]− γ

2

∑
j

[{
K̂†j K̂j , ρ̂

}
− 2K̂j ρ̂K̂

†
j

]
Long-time limit : nonequilibrium steady state (NESS)

Bartolo et al., PRA 94, (2016)
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Lindbladian real-time dynamics as a projector scheme

Hamiltonian system

Imaginary-time dynamics of ψ(τ)

ψ̇(τ) = −(Ĥ − E0)ψ(τ)

Eigenvalues E of Ĥ have E > E0

Long-time limit is ground state :

e−τ(Ĥ−E0) : ψin
τ→∞−−−−→ ψ0

Lindbladian system

Real-time dynamics of ρ̂(t)

˙̂ρ(t) = Lρ̂

Eigenvalues λ of L have Re(λ) ≤ 0

Long-time limit is NESS :

eLt : ρin
t→∞−−−−→ ρss
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Overview of the FCIQMC algorithm

Projector Monte Carlo techniques

Imaginary time dynamics τ→∞−−−−→ exponentially decaying transients

Stochastic implementation of the power method

ψ(τ + ∆τ) = P̂ (∆τ)ψ(τ)

Imaginary-time propagator

P̂ (∆τ) = e−∆τ(Ĥ−E0)

FCIQMC - Full Configuration Interaction Quantum Monte Carlo

Linear projector : P̂ (∆τ) = Î −∆τ(Ĥ − E0)

Spanning on a basis set {|ci〉}

ψ(τ) =
∑
i
ατi |ci〉

"Walking" : αi ∝ niwi, wi = ±1

α
(τ+∆τ)
i = [1−∆τ(Hii − ET )]ατi −∆τ

∑
j 6=i

Hijα
τ
j

Alexandra Nagy EPFL A QMC approach to open quantum systems GPU Day 2017 6 / 17



Overview of the FCIQMC algorithm

Projector Monte Carlo techniques

Imaginary time dynamics τ→∞−−−−→ exponentially decaying transients

Stochastic implementation of the power method

ψ(τ + ∆τ) = P̂ (∆τ)ψ(τ)

Imaginary-time propagator

P̂ (∆τ) = e−∆τ(Ĥ−E0)
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Overview of the FCIQMC algorithm

FCIQMC
algorithm

Spawning

Clone / Death

Annihilation

Alexandra Nagy EPFL A QMC approach to open quantum systems GPU Day 2017 7 / 17



Overview of the FCIQMC algorithm

FCIQMC
algorithm

Spawning

Clone / Death

Annihilation

Alexandra Nagy EPFL A QMC approach to open quantum systems GPU Day 2017 7 / 17



Overview of the FCIQMC algorithm

FCIQMC
algorithm

Spawning

Clone / Death

Annihilation

Alexandra Nagy EPFL A QMC approach to open quantum systems GPU Day 2017 7 / 17



Overview of the FCIQMC algorithm

FCIQMC
algorithm

Spawning

Clone / Death

Annihilation

Alexandra Nagy EPFL A QMC approach to open quantum systems GPU Day 2017 7 / 17



Why FCIQMC ?

Sign problem in QMC

In simulation of fermions or frustrated magnets

QMC, a large family tree→ various manifestation

An undesired state grows relative to the state of interest

Exponential error growth

Why FCIQMC ?

No need to store the whole Hilbert-space

Annihilation→ stable signal to noise ratio

Severe sign problem→ increasing walker population

Highly parallelizable algorithm
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Driven-dissipative QMC - extension to open systems

Real-time evolution leads to NESS→ projector scheme MC
Sample the complex-valued density matrix

ρi(t+ ∆t) ' ρi(t) +
∑
j

(Lij − Sδij)ρj(t)∆t

Two types of walkers : real and imaginary

Additional refinements

Importance sampling

Initiator approach

Problem-specific basis states
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Parallel implementation

Main ideas

FCIQMC is highly parallelizable

Implemented in C++

parallelization with MPI

Master - Slave architecture

Modular structure

Efficient and scalable annihilation algorithm

Alexandra Nagy EPFL A QMC approach to open quantum systems GPU Day 2017 10 / 17



Parallel implementation

Performance

Dual hashing procedure

1 Hash table for storing state information

2 Hash function for state distribution among MPI tasks

States are coded in bitset representation→ broken into 16-bit integer array
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Parallel implementation

Alexandra Nagy EPFL A QMC approach to open quantum systems GPU Day 2017 12 / 17



Parallel implementation

Increasing population→ increasing parallel performance
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Preliminary results

Benchmarking

Benchmarking and performance test on Hamiltonian systems

1 Sign problem free - 1D antiferromagnetic Heisenberg-model

2 Severe sign problem - 2D frustrated Heisenberg-model

Match with analytical results even for large system sizes

A system as a "proof of principle"

2D spin-1/2 lattice governed by the Heisenberg XYZ Hamiltonian (~ = 1)

Ĥ =
∑
〈i,j〉

(
Jxσ̂xi σ̂

x
j + Jyσ̂

y
i σ̂

y
j + Jz σ̂zi σ̂

z
j

)
˙̂ρ = − i

~ [Ĥ, ρ̂]− γ
2

∑
j

[{
σ̂+
j σ̂
−
j , ρ̂

}
− 2σ̂−j ρ̂σ̂

+
j

]
Mean-field phase diagram known [Lee et al., PRL 110, (2013)]
Presence of dissipative phase transition [Rota et al., PRB 95, (2017)]

Figure : Leblanc, Journal Phys. Cond. M. 25, (2013)
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Driven-dissipative XYZ-model

How to detect the phase transition ? [Rota et al. PRB 95, (2017)]

In presence of an applied field : Ĥext(h, θ) =
∑
j
h(cos(θ)σ̂xj + sin(θ)σ̂yj )

The angularly-averaged susceptibility

χav = 1
2π

∫
2π

0
dθ

∂| ~M(h,θ)|
∂h

∣∣∣
h=0
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Conclusion

Motivation

Experimental progress

Major challenges in simulation

Mutual features in Lindbladian dynamics and imaginary-time Schrödinger equation

A generalized PMC method for open systems

What’s done

Highly efficient, parallel implementation

Benchmarking on different Hamiltonian lattice models

A "proof of principle" on open systems

In progress : larger system sizes, different models (e.g. driven-dissipative
Bose-Hubbard, boundary dissipative problems, ...)
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Thank you for your attention !

Alexandra Nagy EPFL A QMC approach to open quantum systems GPU Day 2017 17 / 17



1D antiferromagnetic Heisenberg-model

The Hamiltonian

Ĥ = J
∑
〈i,j〉

SiSj

Antiferromagnet : J > 0

On bipartite lattice it is sign problem free

gauge transformation on one sublattice→ all matrix elements are positive

J
2

(S+
i S
−
j + S−i S

+
j )

S±i →(−1)|i|S±i−−−−−−−−−−−→ −J
2

(S+
i S
−
j + S−i S

+
j )

(although we don’t use any transformation)

Analytical solution known⇒ benchmark model
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2D frustrated Heisenberg-model

The model
The Hamiltonian

Ĥ = J1
∑
〈i,ê〉

SiSi+ê + J2
∑
〈i,d̂〉

SiSi+d̂

where J1, J2 > 0, ê(= x̂, ŷ), and d̂(= x̂± ŷ)

Frustrated system⇒ sign problem
Complex dynamics and variety of phase transitions

- Small frustration regime : Néel order
- Strong diagonal interaction : collinear order
- Intermediate coupling ratio : suggestions of various types of RVB

Order parameter estimators

Néel order parameter : M2 =

〈(
1
N

∑
r

(−1)x+ySzr

)2
〉

Collinear order parameter :

χcol =

〈(
1
N

∑
r
Sr(Sr+x̂ + Sr−x̂ − Sr+ŷ − Sr−ŷ)

)2
〉

VBS order parameter : D2 = 〈D2
x +D2

y〉, where Di = 1
N

∑
r

(−1)irSrSr+̂i
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2D frustrated Heisenberg-model

Increasing the walker population effectively reduces the stochastical error

10.000 walkers

10.000.000 walkers
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2D frustrated Heisenberg-model

Normalized order parameter estimators

System size : 16 sites

Supports the occurrence of a phase transition

VBS order parameter does not prove to be a clear indicator→ the intermediate
phase contains different types of spin-liquid states
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2D frustrated Heisenberg-model

Ground state energy

Ground state energy levels from 16 up to 25 sites

In good agreement with earlier studies

Results with bare FCIQMC algorithm→ robustness

Clever basis, importance sampling or initiator approach would improve the
efficiency
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Sign problem in the QMC simulations

The phase space average of a quantity A

〈A〉 = 1
Z

∑
c∈Ω

A(c)p(c), Z =
∑
c∈Ω

p(c)

→ but ! in QM finding p(c) is not that easy

Every D-dimensional quantum system corresponds to a D + 1-dimensional
effective classical system→ various Quantum-to-classical mappings

Finite-temperature representations

〈A〉 = 1
Z

Tr(Ae−βĤ)

Stochastic series expansion (SSE)

Trotter-Suzuki decomposition

Zero-temperature projector representation

〈A〉 = 1
Z
〈ψ0|A|ψ0〉

Projector scheme : |ψ0〉 ∝ lim
τ→∞

e−τH |ψin〉

SSE for Z = 〈ψ0|ψ0〉 = 〈ψin|e−2τH |ψin〉

Alexandra Nagy EPFL A QMC approach to open quantum systems GPU Day 2017 17 / 17



Sign problem in the QMC simulations

Sign problem

p(c) is proportional to the product of Hamiltonian elements
Sign problem if some of the p(c) < 0

- can not interpret p(c) as probabilities
- appears in simulation of fermions or frustrated magnets

"Solution"

Sampling by using |p(c)|

Z =
∑
c p(c) =

∑
c sign{p(c)}|p(c)|∑

c |p(c)|

BUT the mean value of the sign becomes exponentially small

〈s〉 = Z
Z|p|

= e−βN∆f

Exponential growth in the error
∆s
〈s〉 ∼ e

βN∆f

The same limitation in PMC techniques : an undesired state grows relative to the
state of interest
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